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1. Introduction.-In a recent paper (hereafter quoted as I; see ref. 1), I studied
a family of Hilbert spaces,& (n = 1, 2, .... ), which may be described as follows:
The elements of a are entire analytic functions f(z), where z = (ZI, Z2, . . ., z.) is a
point of the n-dimensional complex Euclidean space Cn. The inner product of two
elements f, f' of ,an is

(f, f') = afn f(z)f'(z)dn(z) (1)

dM,(z) = _n exp (-2;=1zk 2)lldxkdyk (Zk = Xk + iYk),)
so that f belongs to an if and only if (ff) < co.
An orthonormal base of an is given by

Zkm

U[m] (Z) = II V (2)
k /Al k

where m = (mI, ..., mn) denotes an n-tuple of nonnegative integers and k runs from
1 to n. Thus, every f E an may be written as

f(z) = 2mY[mlU[m] (Z), (3)

and lIfIy2= 2 2. For every f £ an we have the inequality

If(z) < Ijf Ie11zz)I2 (z,z) = 7|I Zk 12 (4)
A characteristic feature is the existence of a family of "principal vectors" ea in

an such that for every f E an and a E Cn,
f(a) = (ear f) (5)

The explicit form for ea is

ea(z) = exp (a, z) (a, z) = 2kakZk. (6)

In I, §3d, the operators Yj and Zj (1 < j < n) were introduced, viz.,

(YWf)(Z) = CfZ)) (Zf)(z) = zAf(z). (7)bjzj

Yj and Z, are adjoint (with respect to the inner product (1)), and satisfy the com-
mutation rules,

[Y, Zk I = Bjk [Yj, Yk] = [Zj, Zk] = 0, (7a)

of the annihilation-and-creation operators for "bosons" in quantum theory.
At the end of I, the case of a countably infinite family Yj, Zj was briefly considered,

without, however, interpreting the Hilbert space on which they operate as a func-
tion space.

It is the purpose of this note to sketch the construction of such a space, a.,
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which may be considered a limiting case of the a,,, and to survey, briefly, some of its
properties. A fuller and detailed account will appear in the Communications on
Pure and Applied Mathematics.

2. Definition of o..-We first change the notation by letting

m = (mI, m2, . .)

stand for an infinite sequence of nonnegative integers of which at most a finite
number are different from zero. The (countable) set of these sequences will be
called M. The n-tuples used above are in a one-to-one correspondence with the
elements of the subset Mn of M containing those m for which mk = 0 if k > n.

Similarly, we introduce infinitely many complex variables, and set

Z = (Z1, Z2, . . .).

The functions u[m] (z) are defined as before, for all m E M. (Since all but a finite
number of mk vanish, the product in equation (2) is finite.) For a set of coefficients
'Y[m], equation (3) defines a function f(z) provided the series converges. It follows
from the inequality (4) that the series in equation (3) converges absolutely if
m | y[m] 12 < o as well as Ok Zk 2<<c. This suggests the following definition:
Let 3 be the Hilbert space of sequences z for which 1 Zk 2 < coX, and with inner

product (zz') = ;kzkZ'k. ao00 is the Hilbert space of all functions

f(z) =mGMmfu[m] (Z) (Z E 3)

with complex coefficients -Y[m] satisfying m 1y[m] 2 < co> The inner product of two
elements f, f &E (, is

(Uf f') = Im'Y[miy [im]. (8)
For two elements f, g of c., f = g will mean that f(z) = g(z) for all z.

It is easily seen that f determines the coefficients 7[mI uniquely, and (8) is, there-
fore, a consistent definition.

The projections En: Let Q,, (n = 1, 2, .. .) be the projection operator on 3 de-
fined by

Q.z = (Z1, Z2, . , OZn,0 0 ...)

and introduce the projection En on S,. by

(EnfJ) (z) = f(QnZ).
In particular Enu[m] = U[m] if m E Me, and it vanishes if m X Mn. Ena. is iso-
morphic to a&, and for every f E 0.x,EJf converges strongly to f as n -* o. This
implies that for any two f, f' in ,, (f, f') = lim (Enf, Enf') or, by equation (1),

n - co

(f, f') = lim f f(zI, ., Zn, 0, . .. )f'(zl. ..., Zn, 0, . * )dn(z) (9)

The inner product may thus be interpreted as the integral of ff' over the Hilbert
space 3 (in Gaussian measure). For a general definition of such an integration
process, see Segal2 and Friedrichs-Shapiro.3 We are concerned here with a severely
restricted class of functions, so that the deeper and subtler problems of measure
theory in Hilbert space are not even touched upon, and equation (9) is sufficient
for our purpose.
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3. The Principal Vectors and the Linear Set V.-If we define, for every a & 3,
ea by equation (6), then ea £ 0, and relation (5) holds for every f E a.. Setting
f = eb, one obtains from (5)

(ea, eb) = exp (b,a). (10)
The inequality (4) is an immediate consequence of (5) and (10) via Schwarz' in-
equality.

V is defined as the linear set of all finite linear combinations of principal vectors.
By (5), V is dense in a. because only the zero vector is orthogonal to all ea. Many
results can, therefore, be easily established by verifying them for V, the extension to
a. being straightforward. Thus, the following operators Va(a £ 3) and Vs (S a
unitary operator on 3) may be shown to be unitary on A.:

(Vaf)(z) = f(z - a) exp { (a,z) - 1/2(a, a)}; (11)

(Vsf)(z) = f(S-z). (12)
(They correspond to the operators introduced in I, §3a, and most of §3a may be
literally taken over.)
The definition of WO. has been given with reference to a fixed coordinate system

in S. The fact that Vs in (12) is a unitary operator on a. allows us to conclude,
however, that the definition of a.-including of course the definition of the inner
product-is invariant under a unitary coordinate transformation in 3. (It would
be quite appropriate to write [3] instead of A..)

Alternative definition of a [1]: Utilizing the linear set V, one may give a definition
which, from the start, is independent of any coordinate system in 3. V is made into
a pre-Hilbert space by defining the inner product of two elements f = YPjiXjeaj)
= 20 as

(f, f') = 2j,kXj4k exp (bk, a>)

in accordance with equation (10). a [31 is then obtained by completion.
This procedure can also be applied to a nonseparable Hilbert space 3. The re-

sulting a[3] differs relatively little from A,, but in what follows we restrict our-
selves to a.

Analytic properties of f(z): It is not surprising that the functions f(z) in a. turn
out to be analytic-according to the definition of analytic functions on a normed
vector space. (See Hille-Phillips,4 chap. 3, sec. 3.) In view of equation (5), the
principal vectors provide a convenient tool for studying the analytic properties of
f(z). Thus, one obtains, for a complex variable X and two elements a, b of 3,

b Vf(a) = d-f(a + Xb)Ixo = (hbeaf), (13)
dX

where hb(z) = (b,z). (Equation (13) is identical with the expression Of(a;b) in
Hille-Phillips.) One can also derive simple estimates such as

Ib *Vf(a) 2 < 1lb112(1 +la11a2) exp(lal12).
In a. there exist infinitely many operators of the form (7). Their precise defini-

tion is essentially the same as in I, §3d.
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4. Connection with the Fock Representation.-(a) Polynomials irn a.: Set, for
anyinmE M, m = mkMk. may be decomposed into the direct sum of mutually
orthogonal subspaces Ah, (g = 0, 1, 2, ...) where $ is spanned by all u[m] with
m = g. The functions f belonging to % are homogeneous "polynomials" of

order g. (See reference 4, p. 760.) The principal vectors e(g) of %52 are the pro-
jections of ea into %, viz., e(g)(z) = (a,z)1/g!.

(b) Fock space: Let I be the standard Hilbert space of one-particle quantum
mechanics, i.e., the space of complex square integrable functions $0(x). Here x is a
point in three-dimensional real Euclidean space, and dx denotes Lebesgue measure.
Furthermore, we introduce the g-particle spaces XD (g = 2, 3, ...) of complex
square integrable symmetric functions sp(xi, ..., A) of g points, we set X1 = X,
and we write X0 for the one-dimensional Hilbert space of constants (or complex
numbers). (See, for example, Friedrichs,5 §6.) The Fock space O [X] is the direct
sum of the X, (g = 0, 1, 2, . . . ). Its elements will be denoted by

,b = (sPoy S°b *--,(PYvo--.) (UPS7 C IO)
and the inner product of two elements 4), V' is

(ci), ci)') = E ((P, (p'),
g=O

where (sp, (p,') is the inner product in X0. (This implies that 4) belongs to ! [X] if
(4), 4b) < co.) The subspace of the 4) for which all 'ph = 0 if h $ g will be identified
with I,.

(c) Basic vectors: Let v1(x), V2(x), ... be an orthonormal basis of X. From a
product v = vi,(x1)vi2(x2) ... Vig(X,) (g > 1) we obtain, by symmetrization and
normalization, the function w[m], where m £ M, Im = g, and mj is the number of
times the function Vk appears as a factor in v (the "occupation number" of the state
Vk). If we set, in addition, w[0] = 1, then w[m] with ml = g span Id, and all w[m]
form a basis for the Fock space [[X]. (See Dirac,6 §59.)

(d) Annihilation-and-creation operators: It will be convenient to introduce
X"*, the dual of X. X'* is, of course, itself a Hilbert space of square integrable func-
tions, say, t(x), and we write

(p) = f t(x)p(x)dx.

We shall also set t(O) = 1, t(g)(x1, . ., xs) = II r(xi), and write
i= 1

(W(°)sO) = 'Po and

W(¢(2 ) = f .. f () * .,y X2(X1, . . ., x)dxl . . dx,.
The basis of X* dual to vi consists of the functions vi(x).
For every ,3 E V*, we define the operators

A(A) Jf 8(x)'I(x)dx and A(1)* _f ,3(x)I*(x)dx
as follows. Let A(B)4) = 4', and A(,Q)*4) = 4", for a vector 4) in Fock space.
Then,

9
I (xi..., X') = (1 + g)1/2f sPo+I(xi, . . ., x,,x),B(x)dx; (14a)
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(Po, = O.

y(XI, * **, Xg) - 9-1/2,g._-I(XI) .. ., Xa-l, Xa+l, ... ., Xg)13(Xa) (14b)

(g ) 1).

The functions (p4 and 'Pu" belong to X, and 4) is in the domain of A(A) (or A(*)
if and only if gloj'gJ2< o (or 2g'll$Jpu 2 < cn).

(e) Mapping of the Fock space onto 0X: A unitary mapping D of [X ] onto a.
is defined by

Dw[rn] = u[m] (for all m E M). (15)
Clearly, DM, = If.If = 2;my[m]w[m], thenf = Dd= Ym-y[m]u[m]. In order to
express f(z) in terms of the 'pu, we introduce the following unitary mapping A of
X onto 3. Let z = Ai; then,

zag= (rvi) or t(x) = 2;fi=1ziv,(x). (15a)

It can be shown that with these definitions, for f = D4,
f(z) = 2 (g!)-lI2( (u) ) (z ) (15b)

Since D is unitary, IIf 112 = I1(p| 2. (The series in (15b) converges absolutely for
every z.)

It remains to determine the transforms of the annihilation and creation operators
A and A*. Let b = Ad, and A'(b) = DA(,3)D-'. If nowf' = A'(b)f, andf" =
(A'b)*f, then

f'(z) = b Vf(z), f'(z) = (b,z)f(z). (16)
Again f belongs to the domain of A' (or (A')*) if f' (or f') belongs to 0. (Inci-
dentally, the domains of A'(b) and (A'(b)) * coincide.) The operators Yj and Zf
of equation (7) are, respectively, the transforms of A %) and (A (oj)) *.
The construction (15b) has already been developed by Fock (ref. 7, equation (5),

p. 429). More precisely, our f corresponds to his Q, our v to his b. Similarly, our
equation (16) corresponds to Fock's equations (13), p. 431, and (14), p. 432.

Friedrichs' procedure (ref. 5, §12) is also analogous to this construction, the main
difference being that the mapping (15b) is onto a complex Hilbert space and onto
analytic functions.
Remark: The precise nature of X is irrelevant, and the mapping (15b) could

just as well be defined for the more abstract formulation of Cook8 and Segal.2
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1. Let (Z. £, , be a complete totally a-finite measure space and E a Banach
space. For each 1 < p < o denote by 4C. the vector space of all (Bochner) measur-
able mappings f of Z into E for which z o- flf(z)|P is 4-integrable; here JE is
endowed with the semi-norm f HfK||p= (Jzilf(z)jjPdAt(z))l/P Denote by LE
the associated separated (Banach) space and by f -- f the canonical mapping of
4e onto LE. Let SE be the vector space of all functions which are bounded and
belong to £E; here SE is endowed with the semi-norm f ||If| = ess

SupzIZ-Zf(z) j. Denote by SE the associated separated (normed) space and by
f f the canonical mapping of SE onto SE.

Let D be the set of all linear mappings T' of SE into SE such that' |TI1, < I
and T1l'11. < 1. Then ||T||p < 1 for all 1 < p < o; hence, T can be extended by
continuity to L' (we denote the extension by the same letter). For T E D and
f ' o = U1 Up<=, 2P we denote by Tf a (determined) representative of the class Tf.

2. Let To, T1, . .. , TkE DU; consider the conditions:

(1) To = I;
(2) TjTj = TjTj for i,ji {O. 1,.. ., 1k;
(3) TjTj+1 = Tj+1 for j E {O, 1, . . . , k - 1}.

We define To = I for allj E {O, 1, . . .,k, . For each functionf E V and each a >
O let Gf(a) = {z |||f(z)H> a}.
THEOREM 1. Let To, T1,.. ., Tk E D be k + 1 operators satisfying the condi-

tions (1), (2), (3). For eachf E a and each a > 0, define

G*(a) = Iz Supr oiI0,1. k), N II(Tq + Tj ± ... +Tj)f(z)/(n + 1)|I> a}.
Then, for each set F E g verifying (except for sets of measure zero) the relations
Gf(a) c F c Gf(a) we have

aM(F) <. Fpjf(z)jld1A(z) < c2

COROLLARY 1. Let T E D. For eachf E VU and each a > 0, define

E;(a) = {zJ Sup8ENJI(TO + T1 + ... + T')f(z)/(n + 1) || > al.
Then,

a/I(Ef(a)) <. Ef (a) If(Z) IdA(Z) < C-

Corollary 1 follows from Theorem 1 if we take k = 1, To = I, T. = T and F =
E; (a).


